上海--(美国商业资讯)--"2012LSAC生命科技论坛:干细胞技术与应用"将于2012年10月17日~18日在上海新国际博览中心与"慕尼黑上海生化分析展"同期召开。
干细胞经历最近十年的飞速发展,从胚胎干细胞,到成体干细胞,进一步到iPS,以及这些细胞在动物实验和临床中应用,从小规模的临床研究到部分干细胞产品的上市,无疑给未来的临床应用领域提供巨大想象空间。
本次主题论坛旨在传递干细胞领域最新前沿进展,介绍干细胞基本研究最新技术与临床应用。论坛将邀请国内外著名的干细胞领域专家、学者,在介绍干细胞研究领域的最新进展同时,还邀请在干细胞领域技术方面具有突破性进展的企业科学家参与演讲,全面介绍干细胞领域领先的、实用新技术,促进基础研究与临床应用的融合。
以下是本次论坛的部分嘉宾的演讲摘要,更多相关资讯可关注生物谷会议官方微博(@生物谷会议),或登录会议官网:2012LSAC生命科技论坛:干细胞技术与应用
Modeling Rett Syndrome using human ES cell-derived neurons
Human pluripotent stem cells, including embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), and their differentiated progeny offer extraordinary potential for medical research as cell therapy agents and disease models. It remains, however, a challenge to reveal physiologically-relevant phenotypes and underlying molecular and cellular mechanisms of complex human disorders using hESC/iPSC-derived systems{Marchetto, #136; Saha, 2009 #137}. Neuropsychiatric disorders often involve altered neuronal network activities {Ramocki, 2008 #116; Sudhof, 2008 #123}, providing a fundamental rationale for the examination of synaptic transmission in combination with mechanistic studies in hESC/iPSC-based disease models. As a proof-of-principle study, we report here the establishment of a hESC-based model for Rett Syndrome (RTT), an autism spectrum disorder (ASD) caused by mutations of the Methyl-CpG binding Protein 2 (MeCP2) gene{Amir, 1999 #16}. We demonstrate that MeCP2-deficiency in human neurons induces a shift of spontaneous synaptic activity from primarily glutamatergic excitatory (E) to predominantly GABAergic inhibitory (I) transmission. This increased inhibitory activity is associated with an increased density of GABAergic synapses, and with abnormal expression of several genes involved in synaptic transmission and autism. Using a genetic rescue approach we confirmed the causality between MeCP2 deficiency and the neurotransmission phenotype. Such genetic rescue paradigms could serve as essential controls in other human stem cell including iPSC-based disease models. In summary, we have established a novel hESC-based model for RTT and revealed robust and measurable disease-related phenotypes. The E/I neurotransmission imbalance and shared defects in gene expression suggest that RTT and autism might have common molecular mechanisms. Moreover, we demonstrated that the overall strategy of coupling synaptic transmission and gene expression analyses to phenotype hESC/iPSC-derived diseased neurons could become a general approach to tackle other neuropsychiatric or neurodevelopmental diseases, paving the way to novel therapeutic interventions.
组蛋白修饰在诱导多能干细胞形成中的作用与机制
诱导多能干细胞(iPS)的诞生为病人的个性化治疗提供了新思路,但是在iPS细胞的形成机制依然需要进一步的探究。目前认为,组蛋白修饰(酶)等表观遗传修饰特异性的改变尤其是组蛋白乙酰化在iPS形成中具有极其重要的作用。我们的最新研究发现特定HDAC蛋白的干扰病毒可以有效促进iPS细胞进入成熟期进而提高诱导效率和质量,这些HDAC蛋白极有可能是通过多能性标志基因Nanog及其组成的正反馈环路进而在iPS细胞形成过程中发挥重要作用,这为组蛋白修饰在iPS细胞形成中的功能和机制提供了新的理论基础。
化学小分子增强多能干细胞的诱导
哺乳动物从受精卵发育成个体的过程一直被认为是不可逆的。而近期研究展示了已经分化的体细胞可以通过外源表达转录因子(包括Oct4, Sox2, Klf2, cMyc等)而被重编程回到类似胚胎干细胞的多能状态,而这类细胞被称为诱导多能干细胞(iPS)。iPS与胚胎干细胞非常相似,可分化为各种体细胞。四倍体互补实验也证实iPS可以独立发育成个体。由于不存在伦理问题及免疫排斥问题,iPS技术为干细胞的研究和临床应用提供了有利条件。然而,外源转录因子及病毒载体的使用使其安全性受到质疑;而且iPS的诱导效率尚底,诱导机制也不十分明了。这一切都阻碍了iPS的应用。
间充质干细胞的免疫调节作用
间充质干细胞(MSCs)也被称为多能间充质基质细胞,已被证实在体内多种组织中存在,并且在组织修复与再生过程中是一种十分重要的细胞来源。在组织损伤等病理条件下,这些细胞会迁移到损伤部位。在损伤部位,通常会伴随由先天免疫和获得性免疫细胞产生的促炎症细胞因子。间充质干细胞会在这些炎症因子刺激下被激活。事实上最近已有文章报道间充质干细胞与炎症细胞会相互作用,并且这种作用在决定炎症反应结果的过程中发挥重要作用。